The Relationship between Spot & Future Price of Crude Oil with basic Risk & reserves Using ARCH family models

Sina Mehrabirad

PhD Student of Economics İSTANBUL Bilgi University Sina.Mehrabirad@bilgiedu.net

Aliasghar Sadeghimojarad

Abstract

Oil has a Physical nature and also it is traded as financial asset in the financial markets.so different factors have effects on the Crude oil spot & future prices and these factors make this analysis very hard The main aim of this paper is to study the relationship between Spot & future price and also impact of the reserves & basic risk effect on those prices. For this study we use the monthly time series data of spot & future price of West Texas Intermediate (WTI) crude oil ,USA crude oil reserves & Basic risk between the Jan.1990 to Dec.2012. Due to existence of Unpredictable Volatility & also Uncertainty in our variables, we use ARCH family models. Results imply that there is positive & significant relationship between Spot & future prices. Also the basic risk changes can affect the future & spot prices. The American reserves of crude oil have negative effect on Spot Prices.

<u>Keywords</u>: Crude Oil, Spot, Future, GARCH, USA JEL Codes: C15; C50; Q41

Introduction & literature review

Oil is a vital source of energy for the world and will likely remain so for many decades to come, even under the most optimistic assumptions about the growth in alternative energy sources. Most countries are significantly affected by developments in the oil market, either as producers, consumers, or both. In 2008, oil provided about 34% of the world's energy needs, and in the future, oil is expected to continue to provide a leading component of the world's energy mix.

The International Energy Agency (IEA) projects that oil will provide 30% of the world's energy mix in 2030. In the United States and Canada about 2/3 of oil is used for transportation. In most of the rest of the world, oil is more commonly used for space heating and power generation than for transportation. Oil is a key product for the world's agriculture industry, which helps feed the world's population of more than six billion.

Future & spot contracts of crude oil are become very popular nowdays and they used so much in the trading of crude oil.

So investigate the relationship between these two prices plays very important role in energy economic studies.

There are different factors that can be effect the Market of crude oil.

But according to previous studies, the most imporatnt ones are the commercial reserves of crude oil and also the basic risk that can be computed based on the financial market.

In the most of previous studies they investigate about the causality using VAR¹ or VECM² models but my idea is to use ARCH family models as we have high level of volatility & uncertainty in the oil market specially in the spot & future prices as can see this high rate of volatility in the below graphs.

Ates & George H. K.,³examine the role of fundamentals in inter-temporal pricing relations in natural gas and heating oil spot and futures markets. Using non-linear error correction models with bivariate GARCH error process, it is found that fundamentals are the partial sources of variation in price changes in both markets. Extreme cold weather and inventory surprises affect the variation in basis, spot and futures price changes.

Furthermore, the conditional volatility of natural gas and heating oil spot and futures markets are higher in winter and lower in summer months. The conditional correlations between spot and futures markets are lower in winter and higher in summer months.

Their results are consistent with the implications from the theory of storage.

¹ Vector Autoregressive Model

² Vector Error Correction Model

 $^{^3}$ Price Dynamics in Energy Spot and Futures Markets: The Role of Inventory and Weather, Ates , Aysegul and Wang, George H. K. (2007)

Steve Ohana⁴ at his study about the price volatility in oil and natural gas market.his result indicate that The role of inventory is explaining the shape of the forward curve and spot price volatility in commodity markets.

Also he found that the slope of the forward curve can be used as a proxy for inventory in the case of oil and natural gas.

Maria Caporale⁵, she investigated the role of crude oil spot and futures prices in the process of price discovery by using a cost-ofcarry model.

They provide evidence that futures markets play a more important role than spot markets in the case of contracts with shorter maturities, but the relative contribution of the two types of market turns out to be highly unstable, especially for the most deferred contracts. The implications of these results for hedging and forecasting crude oil spot prices are also discussed.

Data & Methodology

We used the Monthly Spot & future prices of WTI crude oil from Jan.1990 to Dec.2012 that gathered from Energy Information Administration - EIA; also I used the data of the American commercial WTI crude oil from EIA.

And in order to Basic risk we used the 3-Month American Treasury bill Rate, Auction Average (Discounted Series)

Used Variable in this Model

DLSPOT(C)	Spot Prices of FOB ⁶ WTI Crude Oil \$/barrel
DLFUTRE (F)	1-Monthly(Contract1)FOB future prices of WTI crude Oil
	\$/barrel
DSTOCK(inv)	Commercial Reserves of WTI Crude Oil(Thousand Barrels)
DBASİS	3-Month Treasury Bill Rate: Auction Average (Discounted
	Series)

We used the Eviews7 software in order to do the tests and for run the model.

We use below two models to investigate the relationship between these variables:

$$\begin{split} &\Delta \log C_t = \alpha_0 + \sum \alpha_i \,\Delta \log C_{t-i} + \sum \beta_i \,\Delta \log F_{t-i} + \sum \theta_k \,\Delta basis_{t-k} + \sum \rho_m \,inv_{t-m} + \epsilon_t \\ &\Delta \log F_t = \alpha_0 + \sum \alpha_i \,\Delta \log F_{t-i} + \sum \beta_j \,\Delta \log C_{t-j} + \sum \theta_h \,\Delta basis_{t-h} + \sum \rho_n \,inv_{t-n} + \eta_t \end{split}$$

As we can seen, these two models are very simillar.

 $^{\rm 6}$ Free on board

9th MIBES INTERNATIONAL CONFERENCE-POSTER

 $^{^4}$ Forward curves, scarcity and price volatility in oil and natural gas markets, Steve Ohana (2009)

Time-Varying Spot and Futures Oil Prices Dynamics, Maria Caporale(2010)

In the fisrt one we define the spot prices as the dependent variable and in the second Future price as dependent variable.

At beginning we should check the Unit root test absed on Augmented Dickey-Fuller test as well as Correlogram for all variables. (see the appendix for result.)

We can see that the variables has unit root at level or in the other words they are non-stationary but with one lag they will be stationary(as the calculated ADF shown below)

	DLSPOT	DLFUTURE	DSTOCK	DBASIS
ADF test	-12.20913	-12.15599	-14.11966	-5.520553
statistic				
Critical Value	-3.454263	-3.454263	-3.454263	-3.454263
at 1%				
Critical Value	-2.871961	-2.871961	-2.871961	-2.871961
at 5%				
Critical Value	-2.572396	-2.572396	-2.572396	-2.572396
at 10%				

Source: calculations of the author

And then we should check the lag criteria based on Schwars(sc) or Akaike(AIC) for all variables in order to find the optimal lag.

Firstly use OLS to estimate these equation but since there is serial correlation problem as we can test by Breusch-Godfrey Serial Correlation LM Test(as shown in below), so i add AR model in order to solve this problem.

Breusch -Godfrey LM Test for Spot Prices before removal serial correlation Problem

F-Statistic	13.84272	Prob.	0.000
Obs*R-Squared	26.17594	Prob.	0.0000

Source: calculations of the author

Breusch -Godfrey LM Test for future Prices before removal serial correlation Problem

Comment and and the souther			
Obs*R-Squared	26.29170	Prob.	0.000
F-Statistic	13.91048	Prob.	0.0000

Source: calculations of the author

Breusch -Godfrey LM Test for Spot Prices after removal serial correlation Problem

F-Statistic	2.794441	Prob.	0.0631
Obs*R-Squared	5.815651	Prob.	0.0546

Source: calculations of the author

Breusch -Godfrey LM Test for future Prices after removal serial correlation Problem

	A 1.4		
Obs*R-Squared	5.565294	Prob.	0.0619
F-Statistic	2.671583	Prob.	0.0711

Source:calculations of the author

Then also check ARCH effect in the OLS residual and since there is arch effect so we try to use ARCH/GARCH models in next step that can be defined as:

AutoRegressive Conditional Heteroskedasticity or ARCH(q):

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2$$

$$\sigma_{t}^{2} = \alpha_{0} + \alpha_{1}\epsilon_{t-1}^{2} + \dots + \alpha_{q}\epsilon_{t-q}^{2} + \beta_{1}\sigma_{t-1}^{2} + \dots + \beta_{p}\sigma_{t-p}^{2} = \alpha_{0} + \sum_{i=1}^{r} \alpha_{i}\epsilon_{t-i}^{2} + \sum_{i=1}^{r} \beta_{i}\sigma_{t-i}^{2}$$

In order to ACF & PCAF, then we can use the GARCH(1,1), GARCH(0,1) & ARCH(1) or maybe TARCH(1,1,1).

So we try all of them and at the end i should compare them with respect to Log-Likehihood(the model with biggest Log-Likelihood is the best).

Also we check TARCH model, this model is a asymetric model.

But since the corresponding coefficient is insignificant so it seems that the TARCH(1,1,1) can't be a proper model.

The results of the all ARCH family models for spot prices(first model) are summarized in the table as we can see in the following:

	GARCH(1,1)	GARCH(0,1)	ARCH(1)
Dlspot(-1)	-0.443454	-0.389653	0.103014
dlfuture	1.007748	1.007396	1.010044
Dlfuture(-1)	0.439062	0.386092	-0.10646
dstock	-5.37E-08	-5.49E-08	-3.21E- 08
dbasis	-0.003585	-0.003626	-0.00227
Dbasis(-1)	0.003876	0.003743	0.002858
R-squared	0.997956	0.997980	0.997833
Log- likelihood	1131.308	1131.075	1144.587

Source:calculations of the author

Afetr that we run the ARCH family model we should recheck the ARCH Heteroskedasticity Test to see that is the ARCH effect still remain in the residuals or not(as shown in below):

Results of ARCH LM Test for residuals ARCH(1) model for SPOT prices

F-Statistic	0.053749	Prob.	0.8168	
Obs*R-Squared	0.054145	Prob.	0.8160	
Source:calculations of the author				

Results of ARCH LM Test for residuals ARCH(1) model for FUTURE prices

F-Statistic	0.118240	Prob.	0.7312
Obs*R-Squared	0.119082	Prob.	0.7300

Source: calculations of the author

Results

Results of the eviews 7 software implies that the ARCH(1) is the best model since the corresponding log Likelihood is highest in both Models for Spot & Future.

Also we can say that GARCH(1,1) can't be the good model since GARCH corresponding coefficient in Variance equation(as shown in the appendix) is insignificant in both Spot & Future Prices Models.

We can see the coefficient of the previous variance in GARCH(1,1) Model which shows the persistency too is 0.81 that is very high or we can say the shocks in this model are very persistent.

The approximate 99% of R-Squared level which is very high shows that the model fits nicely.

And since the Durbin-Watson stat is close to 2 that shows there isn't serial correlation problem in the model.

According to the coeeficients of ARCH(1) model we can see that there is Positive & Significant relationship between Spot and future prices in both models.

The Reserves amount of Crude Oil has negative effect on Spot prices and that is consistent with the basic theories in Economics.

Also there is negative relationship between basic risk & spot prices, about the reason of this effect we can say When Basic Risk decreases, then uncertaintly in the market decreases and it causes an increase in the level of crude oil demand in the market then Spot prices increases consequently.

References

- Ates, Aysegul and Wang, George. H. K, (2007), "Price Dynamics in energy Spot and Futures markets: The Role of Inventory and Weather", Financial Management Association Annual.
- Caporale, Guglielmo Maria, Ciferri, Davide and Giradi, Alessandro (2010), "Time-Varying Spot and Futures Oil Prices Dynamics", Working Paper, Brunel University, Department of Economics and Finance.

- Chang Chia-Lin, McAleer, Michael and Tansuchat, Roengchai (2011), "Crude Oil Hedging Strategies Using Multivariate GARCH", Energy Economics, Available online 27 January 2011.
- Fama. E. F And French. K. R (1987), "Commodity Futures Prices: SomeEvidence on Forecast Power, Premiums and the Theory of Storage", Journal of Business, Vol.60, p.p. 55-74.
- Fattouh. Bassam (2010), "Oil Market Dynamics through the Lens of the 2002-2009 Price Cycle", Oxford Institute for Energy Studies, Working Paper M39.
- Geman, Helyette and Ohana, Steve (2009); "Forward Curves, Scarcity and Price Volatility in Oil and Natural Gas Market", Energy Economics, Vol.31,Issue.4, p.p. 576-585.
- Huang, Dengshi, Wang, Yudong and Wei. Yu (2010), "Forecasting Crude Oil Market Volatility: Further Evidence Using GARCH-Class Models", Energy Economics, Vol.32, Issue.6, p.p. 1477-1484.
- Jalali-Naini. Ahmad. R (2009), "The Impact of Financial Markets on the Price of Oil and Volatility: Developments since 2007": OPEC Secretrariat, Research Division, Petroleum Studies Department.
- Kaufmann, Robert. K (2011), "The Role of Market Fundamentals and Speculation in Recent Price Changes for Crude Oil", Energy Policy, Vol.39, Issue.3, p.p. 105-115.

Appendix for the software results

Null Hypothesis: DLSPOT has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-12.20913	0.0000
Test critical values:	1% level	-3.454085	
	5% level	-2.871883	
	10% level	-2.572354	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DLSPOT) Method: Least Squares Date: 06/04/13 Time: 19:38 Sample (adjusted): 1990M03 2012M12 Included observations: 274 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLSPOT(-1) C	-0.707685 0.003615	0.057964 0.004920	-12.20913 0.734759	0.0000 0.4631
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.354016 0.351641 0.081315 1.798508 299.7962 149.0629 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	lent var nt var terion rion n criter. on stat	0.000177 0.100987 -2.173695 -2.147322 -2.163110 2.009234

_

Null Hypothesis: DLFUTURE has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level		-12.15599 -3.454085	0.0000
	5% level 10% level	-2.871883 -2.572354	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DLFUTURE) Method: Least Squares Date: 06/04/13 Time: 19:41 Sample (adjusted): 1990M03 2012M12 Included observations: 274 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLFUTURE(-1) C	-0.703873 0.003600	0.057903 0.004869	-12.15599 0.739373	0.0000 0.4603
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.352023 0.349641 0.080461 1.760913 302.6903 147.7681 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000150 0.099772 -2.194820 -2.168447 -2.184234 2.004598

Null Hypothesis: DSTOCK has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-14.11966	0.0000
Test critical values:	1% level	-3.454085	
	5% level	-2.871883	
	10% level	-2.572354	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DSTOCK) Method: Least Squares Date: 06/04/13 Time: 19:42 Sample (adjusted): 1990M03 2012M12 Included observations: 274 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DSTOCK(-1) C	-0.847534 430.4693	0.060025 621.9019	-14.11966 0.692182	0.0000 0.4894
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.422952 0.420831 10281.06 2.88E+10 -2919.014 199.3649 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	lent var nt var terion rion n criter. on stat	-14.81387 13509.38 21.32127 21.34764 21.33185 1.931869

Null Hypothesis: DBASIS has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-5.520553	0.0000
Test critical values:	1% level	-3.454263	
	5% level	-2.871961	
	10% level	-2.572396	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(DBASIS) Method: Least Squares Date: 06/04/13 Time: 19:44 Sample (adjusted): 1990M05 2012M12 Included observations: 272 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DBASIS(-1) D(DBASIS(-1)) D(DBASIS(-2)) C	-0.375636 -0.216328 -0.248789 -0.010617	0.068043 0.067818 0.058916 0.010507	-5.520553 -3.189823 -4.222786 -1.010506	0.0000 0.0016 0.0000 0.3132
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.319609 0.311992 0.170371 7.779087 97.44210 41.96368 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.000404 0.205400 -0.687074 -0.634048 -0.665786 1.972687

Lag Criteria for DLSPOT

VAR Lag Order Selection Criteria Endogenous variables: DLSPOT Exogenous variables: C Date: 06/04/13 Time: 15:08 Sample: 1990M01 2012M12 Included observations: 267

Lag	LogL	LR	FPE	AIC	SC	HQ
0	293.0813	NA	0.006567	-2.187875	-2.174439	-2.182478
1	302.2653	18.23045*	0.006176*	-2.249178*	-2.222307*	-2.238384*
2	302.4600	0.385091	0.006214	-2.243146	-2.202840	-2.226956
3	302.8776	0.822537	0.006241	-2.238783	-2.185042	-2.217196
4	304.0183	2.238710	0.006234	-2.239837	-2.172660	-2.212853
5	304.3055	0.561569	0.006268	-2.234498	-2.153886	-2.202117
6	306.1119	3.517985	0.006230	-2.240538	-2.146491	-2.202760
7	306.4155	0.589069	0.006262	-2.235322	-2.127839	-2.192147
8	306.4242	0.016746	0.006309	-2.227896	-2.106978	-2.179324

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Lag Criteria for DLFUTURE

VAR Lag Order Selection Criteria Endogenous variables: DLFUTURE Exogenous variables: C Date: 06/04/13 Time: 15:10 Sample: 1990M01 2012M12 Included observations: 267

Lag	LogL	LR	FPE	AIC	SC	HQ
0	295.2763	NA	0.006460	-2.204317	-2.190881	-2.198920
1	304.7607	18.82670*	0.006062*	-2.267870*	-2.241000*	-2.257077*
2	304.8939	0.263326	0.006101	-2.261377	-2.221071	-2.245187
3	305.2437	0.689175	0.006131	-2.256507	-2.202765	-2.234919
4	306.5336	2.531469	0.006118	-2.258678	-2.191502	-2.231694
5	306.7335	0.390957	0.006155	-2.252686	-2.172073	-2.220304
6	308.1997	2.855330	0.006133	-2.256177	-2.162129	-2.218399
7	308.6991	0.968914	0.006156	-2.252428	-2.144944	-2.209252
8	308.7046	0.010732	0.006202	-2.244978	-2.124060	-2.196406

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Lag Criteria for Dstock

VAR Lag Order Selection Criteria Endogenous variables: DSTOCK Exogenous variables: C Date: 06/04/13 Time: 15:11 Sample: 1990M01 2012M12 Included observations: 267

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-2841.218	NA	1.03e+08	21.29002	21.30346	21.29542
1	-2837.606	7.170249	1.01e+08	21.27046	21.29733*	21.28125*
2	-2837.566	0.078489	1.02e+08	21.27765	21.31796	21.29384
3	-2837.459	0.210767	1.03e+08	21.28434	21.33808	21.30593
4	-2834.210	6.375874*	1.01e+08*	21.26749*	21.33467	21.29448
5	-2833.661	1.073739	1.01e+08	21.27087	21.35148	21.30325
6	-2833.659	0.003950	1.02e+08	21.27835	21.37239	21.31612
7	-2832.473	2.300605	1.02e+08	21.27695	21.38444	21.32013
8	-2831.156	2.545101	1.02e+08	21.27458	21.39550	21.32315

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Lag Criteria for Dbasis

VAR Lag Order Selection Criteria Endogenous variables: DBASIS Exogenous variables: C Date: 06/04/13 Time: 15:13 Sample: 1990M01 2012M12 Included observations: 267

Lag	LogL	LR	FPE	AIC	SC	HQ
0 1 2 3 4 5 6 7	52.51022 84.19215 84.91776 93.46709 93.83695 93.92835 98.89541 99.67752	NA 62.88923 1.434910 16.84249 0.725875 0.178682 9.673680 1.517353	0.039807 0.031633 0.031698 0.029956 0.030097 0.030303 0.029416 0.029464	-0.385844 -0.615672 -0.613616 -0.670165 -0.665445 -0.658639 -0.688355 -0.688355 -0.686723	-0.372409 -0.588801 -0.573310 -0.616424* -0.598268 -0.578027 -0.594307 -0.579240	-0.380447 -0.604878 -0.597425 -0.648578 -0.638461 -0.626258 -0.650577* -0.643548
8	101.8120	4.125147*	0.029215*	-0.695221*	-0.574303	-0.646649

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

OLS for Spot Price

Dependent Variable: DLSPOT Method: Least Squares Date: 06/04/13 Time: 15:31 Sample (adjusted): 1990M05 2012M12 Included observations: 272 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	2.60E-05	0.000259	0.100255	0.9202
DLSPOT(-1)	-0.502700	0.054334	-9.252067	0.0000
DLFUTURE	1.009100	0.003203	315.0665	0.0000
DLFUTURE(-1)	0.500719	0.054742	9.146877	0.0000
DSTOCK	-5.14E-08	2.59E-08	-1.983569	0.0483
DSTOCK(-1)	-2.37E-08	2.57E-08	-0.922756	0.3570
DBASIS	-0.004301	0.001522	-2.825723	0.0051
DBASIS(-1)	0.003048	0.001600	1.904367	0.0580
DBASIS(-2)	0.001153	0.001610	0.716420	0.4744
DBASIS(-3)	0.001002	0.001494	0.670708	0.5030
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.997688 0.997608 0.004146 0.004504 1111.213 12560.41 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.005742 0.084781 -8.097155 -7.964588 -8.043934 2.270574

Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:					
F-statistic	13.84272	Prob. F(2,260)	0.0000		
Obs*R-squared	26.17594	Prob. Chi-Square(2)	0.0000		

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 06/04/13 Time: 15:33 Sample: 1990M05 2012M12 Included observations: 272

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DSTOCK(-1) DBASIS DBASIS(-1) DBASIS(-2) DBASIS(-3) RESID(-1) RESID(-2)	1.22E-05 0.111504 0.000730 -0.111964 -6.61E-09 -1.45E-08 -0.000219 0.000642 -0.000782 0.000220 -0.294903 -0.222404	0.000247 0.175949 0.003073 0.177577 2.48E-08 2.58E-08 0.001457 0.001663 0.001767 0.001440 0.172907 0.108378	0.049299 0.633731 0.237452 -0.630509 -0.266156 -0.560420 -0.150239 0.385982 -0.442656 0.152626 -1.705562 -2.052118	0.9607 0.5268 0.8125 0.5289 0.7903 0.5757 0.8807 0.6998 0.6584 0.8788 0.0893 0.0412
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.096235 0.057999 0.003957 0.004071 1124.974 2.516857 0.004998	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		2.25E-19 0.004077 -8.183635 -8.024555 -8.119770 2.039794

Heteroskedasticity Test

Heteroskedasticity Test: ARCH

F-statistic	36.13710	Prob. F(1,269)	0.0000
Obs*R-squared	32.09428	Prob. Chi-Square(1)	0.0000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/04/13 Time: 15:35 Sample (adjusted): 1990M06 2012M12 Included observations: 271 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID ² (-1)	1.06E-05 0.342264	2.37E-06 0.056936	4.494975 6.011415	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.118429 0.115152 3.58E-05 3.44E-07 2391.094 36.13710 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion ion n criter. n stat	1.63E-05 3.80E-05 -17.63169 -17.60510 -17.62101 1.985539

Residuals of OLS Model

After Remove Serial Correlation

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	2.794441	Prob. F(2,251)	0.0631
Obs*R-squared	5.815651	Prob. Chi-Square(2)	0.0546

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 06/04/13 Time: 16:51 Sample: 1990M10 2012M12 Included observations: 267

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(3) AR(4) AR(5) AR(6) AR(6) AR(7) RESID(-1) RESID(-2)	3.17E-06 0.081412 8.93E-05 -0.082391 1.59E-09 0.000285 -0.014989 0.598459 0.257735 0.218824 0.145326 0.154467 0.036233 -0.071184 -0.614823	8.00E-05 0.211873 0.002972 0.213030 1.90E-08 0.001338 0.001332 0.512468 0.319569 0.230667 0.167108 0.168516 0.106025 0.099577 0.505890 0.263585	0.039621 0.384247 0.030053 -0.386757 0.083928 0.293738 -0.214085 -0.029248 1.872706 1.117348 1.309477 0.862389 1.456890 0.363871 -0.140711 -2.332542	0.9684 0.7011 0.9760 0.6993 0.9332 0.7692 0.8307 0.9767 0.0623 0.2649 0.1916 0.3893 0.1464 0.7163 0.8882 0.0205
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.021781 -0.036678 0.003684 0.003407 1125.584 0.372592 0.984779	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	dent var ent var iterion rion on criter. on stat	-8.04E-15 0.003618 -8.311490 -8.096524 -8.225139 2.014479

GARCH(1,1) for Spot

Dependent Variable: DLSPOT Method: ML - ARCH (Marquardt) - Normal distribution Date: 06/04/13 Time: 18:22 Sample (adjusted): 1990M10 2012M12 Included observations: 267 after adjustments Convergence achieved after 93 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(15) + C(16)*RESID(-1)*2 + C(17)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	2.54E-06	8.09E-05	0.031412	0.9749
DLSPOT(-1)	-0.443454	0.246686	-1.797649	0.0722
DLFUTURE	1.007748	0.002899	347.6272	0.0000
DLFUTURE(-1)	0.439062	0.248178	1.769141	0.0769
DSTOCK	-5.37E-08	1.87E-08	-2.868614	0.0041
DBASIS	-0.003585	0.001456	-2.462862	0.0138
DBASIS(-1)	0.003876	0.001578	2.456135	0.0140
AR(1)	-0.387961	0.248689	-1.560024	0.1188
AR(2)	-0.490126	0.062208	-7.878772	0.0000
AR(3)	-0.322131	0.142382	-2.262438	0.0237
AR(4)	-0.376078	0.069306	-5.426362	0.0000
AR(5)	-0.229947	0.097252	-2.364455	0.0181
AR(6)	-0.221125	0.062808	-3.520645	0.0004
AR(7)	-0.099661	0.069119	-1.441871	0.1493
	Variance I	Equation		
С	2.45E-06	6.52E-07	3.751036	0.0002
RESID(-1) ²	-0.019840	0.018330	-1.082426	0.2791
GARCH(-1)	0.810156	0.051319	15.78680	0.0000
R-squared	0.997956	Mean depend	lent var	0.003610
Adjusted R-squared	0.997851	S.D. depende	entvar	0.080884
S.E. of regression	0.003750	Akaike info cr	iterion	-8.346875
Sum squared resid	0.003558	Schwarz crite	rion	-8.118474
Log likelihood	1131.308	Hannan-Quin	in criter.	-8.255128
Durbin-Watson stat	1.861487			
Inverted AR Roots	.58+.59i 51	.5859i 5250i	.01+.74i .52+.50i	.0174i

Heteroskedasticity Test

Heteroskedasticity Test: ARCH

F-statistic	0.228792	Prob. F(1,264)	0.6328
Obs*R-squared	0.230325	Prob. Chi-Square(1)	0.6313

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 06/04/13 Time: 18:25 Sample (adjusted): 1990M11 2012M12 Included observations: 266 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	0.988746 0.029426	0.180853 0.061519	5.467130 0.478322	0.0000 0.6328
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000866 -0.002919 2.768329 2023.203 -647.2868 0.228792 0.632817	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var nt var terion ion n criter. n stat	1.018606 2.764298 4.881856 4.908799 4.892680 2.000169

30/5-1/6 2014

Dependent Variable: DLSPOT Method: ML - ARCH (Marquardt) - Normal distribution Date: 06/04/13 Time: 20:52 Sample (adjusted): 1990M10 2012M12 Included observations: 267 after adjustments Convergence achieved after 76 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(15) + C(16)*GARCH(-1)

C 1.05E-06 8.23E-05 0.012808 0.9898 DLSPOT(-1) -0.389653 0.265581 -1.467174 0.1423 DLFUTURE 1.007396 0.002801 359.6334 0.0000 DLFUTURE(-1) 0.386092 0.267137 1.445298 0.1484 DSTOCK -5.49E-08 1.88E-08 -2.911660 0.0036 DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(7) -0.092685 0.069250 -1.338418 0.1808 SE. of regression 0.03727 Akaike info criterion -8.352624	Variable	Coefficient	Std. Error	z-Statistic	Prob.
DLSPOT(-1) -0.389653 0.265581 -1.467174 0.1423 DLFUTURE 1.007396 0.002801 359.6334 0.0000 DLFUTURE(-1) 0.386092 0.267137 1.445298 0.1484 DSTOCK -5.49E-08 1.88E-08 -2.911660 0.0036 DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Agiusted R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997786 S.D. dependent var 0.003610	С	1.05E-06	8.23E-05	0.012808	0.9898
DLFUTURE 1.007396 0.002801 359.6334 0.0000 DLFUTURE(-1) 0.386092 0.267137 1.445298 0.1484 DSTOCK -5.49E-08 1.88E-08 -2.911660 0.0036 DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.977059 0.0029 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 SE. of regression 0.03727 Akaike info criterion -8.352624 Sum squared resid 0.093715 Schwarz criterion -8.137658	DLSPOT(-1)	-0.389653	0.265581	-1.467174	0.1423
DLFUTURE(-1) 0.386092 0.267137 1.445298 0.1484 DSTOCK -5.49E-08 1.88E-08 -2.911660 0.0036 DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997980 Mean dependent var 0.003610 Astike info criterion -8.352624 <td>DLFUTURE</td> <td>1.007396</td> <td>0.002801</td> <td>359.6334</td> <td>0.0000</td>	DLFUTURE	1.007396	0.002801	359.6334	0.0000
DSTOCK -5.49E-08 1.88E-08 -2.911660 0.0036 DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C C 2.37E-06 7.11E-07 3.338626 0.0008 GRCH(-1) 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997980 Mean dependent var 0.003610 SE	DLFUTURE(-1)	0.386092	0.267137	1.445298	0.1484
DBASIS -0.003626 0.001435 -2.526782 0.0115 DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.003610	DSTOCK	-5.49E-08	1.88E-08	-2.911660	0.0036
DBASIS(-1) 0.003743 0.001606 2.330227 0.0198 AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.003884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 S	DBASIS	-0.003626	0.001435	-2.526782	0.0115
AR(1) -0.404472 0.268168 -1.508278 0.1315 AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.003610 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 <td< td=""><td>DBASIS(-1)</td><td>0.003743</td><td>0.001606</td><td>2.330227</td><td>0.0198</td></td<>	DBASIS(-1)	0.003743	0.001606	2.330227	0.0198
AR(2) -0.455386 0.068803 -6.618695 0.0000 AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .01+.73i <td>AR(1)</td> <td>-0.404472</td> <td>0.268168</td> <td>-1.508278</td> <td>0.1315</td>	AR(1)	-0.404472	0.268168	-1.508278	0.1315
AR(3) -0.312872 0.139440 -2.243769 0.0248 AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .0173i .0173i 51 5349i 53+.49i <td>AR(2)</td> <td>-0.455386</td> <td>0.068803</td> <td>-6.618695</td> <td>0.0000</td>	AR(2)	-0.455386	0.068803	-6.618695	0.0000
AR(4) -0.352099 0.079203 -4.445526 0.0000 AR(5) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .0173i .0173i 51 5349i 53+.49i .0173i	AR(3)	-0.312872	0.139440	-2.243769	0.0248
AR(5) AR(6) -0.212960 0.099656 -2.136947 0.0326 AR(6) -0.207100 0.069565 -2.977059 0.0029 AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .0173i .0173i 51 5349i 53+.49i .0173i	AR(4)	-0.352099	0.079203	-4.445526	0.0000
AR(6) AR(7) -0.207100 -0.092685 0.069565 0.069250 -2.977059 -1.338418 0.0029 0.0029 Variance Equation C 2.37E-06 GARCH(-1) 7.11E-07 0.794483 3.338626 0.057567 0.0008 R-squared 0.997980 Mean dependent var 0.097876 0.003610 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.003515 0.008884 Sum squared resid 0.003515 Schwarz criterion 1131.075 -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. 1.948074 -8.266274 Inverted AR Roots .57+.58i .5758i .01+.73i .0173i	AR(5)	-0.212960	0.099656	-2.136947	0.0326
AR(7) -0.092685 0.069250 -1.338418 0.1808 Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .0173i .0173i Inverted AR Roots .57+.58i .5758i .01+.73i .0173i	AR(6)	-0.207100	0.069565	-2.977059	0.0029
Variance Equation C 2.37E-06 7.11E-07 3.338626 0.0008 GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.0080884 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .01+.73i .0173i Inverted AR Roots .57+.58i .5758i .01+.73i .0173i	AR(7)	-0.092685	0.069250	-1.338418	0.1808
C GARCH(-1) 2.37E-06 7.11E-07 3.338626 0.0008 R-squared 0.794483 0.057567 13.80107 0.0000 R-squared 0.997980 Mean dependent var 0.003610 Adjusted R-squared 0.997876 S.D. dependent var 0.003610 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .01+.73i .0173i Inverted AR Roots .57+.58i .5758i .01+.73i .0173i		Variance I	Equation		
GARCH(-1) 0.794483 0.057567 13.80107 0.0000 R-squared Adjusted R-squared S.E. of regression 0.997980 Mean dependent var 0.997876 0.003610 S.E. of regression 0.003727 Akaike info criterion 0.003515 -8.352624 Sum squared resid Log likelihood 0.003515 Schwarz criterion 1131.075 -8.137658 Durbin-Watson stat 1.948074 -5758i .01+.73i .0173i Inverted AR Roots .57+.58i .5758i .01+.73i .0173i	С	2.37E-06	7.11E-07	3.338626	0.0008
R-squared Adjusted R-squared 0.997980 0.997876 Mean dependent var S.D. dependent var 0.080884 0.003610 S.E. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 .5758i .01+.73i Inverted AR Roots .57+.58i .5758i .01+.73i 51 5349i 53+.49i	GARCH(-1)	0.794483	0.057567	13.80107	0.0000
Adjusted R-squared S.E. of regression 0.997876 0.003727 S.D. dependent var Akaike info criterion 0.080884 Sum squared resid Log likelihood 0.003515 Schwarz criterion -8.352624 Durbin-Watson stat 1131.075 Hannan-Quinn criter. -8.266274 Inverted AR Roots .57+.58i .5758i .01+.73i .0173i	R-squared	0.997980	Mean depen	dent var	0.003610
S.É. of regression 0.003727 Akaike info criterion -8.352624 Sum squared resid 0.003515 Schwarz criterion -8.137658 Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 -5758i .01+.73i Inverted AR Roots .57+.58i .5758i .01+.73i 51 5349i 53+.49i	Adjusted R-squared	0.997876	S.D. depende	ent var	0.080884
Sum squared resid Log likelihood 0.003515 1131.075 Schwarz criterion Hannan-Quinn criter. -8.137658 Durbin-Watson stat 1.948074 -8.266274 -8.266274 Inverted AR Roots .57+.58i .5758i .01+.73i 51 5349i 53+.49i 53+.49i	S.E. of regression	0.003727	Akaike info ci	riterion	-8.352624
Log likelihood 1131.075 Hannan-Quinn criter. -8.266274 Durbin-Watson stat 1.948074 - -8.266274 Inverted AR Roots .57+.58i .5758i .01+.73i 51 5349i 53+.49i	Sum squared resid	0.003515	Schwarz crite	rion	-8.137658
Durbin-Watson stat 1.948074 Inverted AR Roots .57+.58i .5758i .01+.73i .0173i 51 5349i 53+.49i .51+.73i .0173i	Log likelihood	1131.075	Hannan-Quir	nn criter.	-8.266274
Inverted AR Roots .57+.58i .5758i .01+.73i .0173i 515349i53+.49i	Durbin-Watson stat	1.948074			
515349i53+.49i	Inverted AR Roots	.57+.58i	.5758i	.01+.73i	.0173i
		51	5349i	53+.49i	

ARCH(1) for Spot

Dependent Variable: DLSPOT Method: ML - ARCH (Marquardt) - Normal distribution Date: 06/04/13 Time: 19:08 Sample (adjusted): 1990M10 2012M12 Included observations: 267 after adjustments Convergence achieved after 57 iterations Presample variance: backcast (parameter = 0.7) GARCH = C(15) + C(16)*RESID(-1)*2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-6.29E-05	5.01E-05	-1.256225	0.2090
DLSPOT(-1)	0.103014	0.199271	0.516952	0.6052
DLFUTURE	1.010044	0.001802	560.5845	0.0000
DLFUTURE(-1)	-0.106469	0.201318	-0.528859	0.5969
DSTOCK	-3.21E-08	1.01E-08	-3.179561	0.0015
DBASIS	-0.002271	0.000914	-2.485094	0.0130
DBASIS(-1)	0.002858	0.000820	3.484890	0.0005
AR(1)	-0.807274	0.207251	-3.895149	0.0001
AR(2)	-0.636597	0.192472	-3.307477	0.0009
AR(3)	-0.472857	0.154860	-3.053435	0.0023
AR(4)	-0.383406	0.114852	-3.338256	0.0008
AR(5)	-0.246324	0.098878	-2.491181	0.0127
AR(6)	-0.151981	0.067853	-2.239868	0.0251
AR(7)	-0.112324	0.047341	-2.372669	0.0177
	Variance	Equation		
С	4.99E-06	5.81E-07	8.589508	0.0000
RESID(-1) ^A 2	1.020454	0.177006	5.765067	0.0000
R-squared	0.997833	Mean depend	dent var	0.003610
Adjusted R-squared	0.997722	S.D. depende	ent var	0.080884
S.E. of regression	0.003860	Akaike info cr	iterion	-8.453836
Sum squared resid	0.003770	Schwarz crite	rion	-8.238870
Log likelihood	1144.587	Hannan-Quir	n criter.	-8.367486
Durbin-Watson stat	2.055155			
Inverted AR Roots	.48+.54i 53+.54i	.4854i 5354i	.01+.71i 73	.0171i

Heteroskedasticity Test

Heteroskedasticity Test: ARCH

F-statistic	0.053749	Prob. F(1,264)	0.8168
Obs*R-squared	0.054145	Prob. Chi-Square(1)	0.8160

Test Equation: Dependent Variable: WGT_RESID^2 Method: Least Squares Date: 06/04/13 Time: 19:09 Sample (adjusted): 1990M11 2012M12 Included observations: 266 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C WGT_RESID^2(-1)	1.016702 -0.014272	0.140628 0.061559	7.229706 -0.231837	0.0000 0.8168
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000204 -0.003584 2.063866 1124.519 -569.1724 0.053749 0.816844	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	lent var ent var iterion rion n criter. on stat	1.002481 2.060178 4.294529 4.321473 4.305353 2.000796

Residuals

Correlogram of Residuals Squared

Date: 06/04/13 Time: 19:13 Sample: 1990M10 2012M12 Included observations: 267 Q-statistic probabilities adjusted for 7 ARMA term(s)

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	1 141	1 -0.014	-0.014	0.0549	
10	וםי ו	2 -0.053	-0.053	0.8048	
1.1.1	1 111	3 -0.021	-0.023	0.9274	
141	1 111	4 -0.011	-0.014	0.9581	
1 <u>b</u> 1	1 1 1 1	5 0.039	0.037	1.3805	
10	1 161	6 -0.043	-0.043	1.8825	
111	1 111	7 -0.014	-0.012	1.9345	
1 1	1 11	8 0.001	-0.002	1.9349	0.164
1 1	1 11	9 -0.005	-0.007	1.9412	0.379
	l ıdı.	10 -0.060	-0.064	2 9485	0.400
<u>.</u>	լ դես	11 0.057	0.058	3 8582	0 426
1 1	1 1	12 0.023	0.017	4.0050	0.549
11	1 เกิง	13 -0.041	-0.039	4 4843	0.611
	լ դես	14 0.064	0.067	5 6558	0.580
und i	1 16	15 -0.092	-0.090	8 0694	0 427
		16 -0.024	-0.031	8 2351	0.511
	1 11	17 0.028	0.023	8 4548	0.585
	1	18 0.030	0.023	9 7091	0.649
	1	10 0.030	0.031	9 9560	0.707
:%:	1 :%:	20 0.041	0.040	0.3300	0.720
::::	1 : 6:	20 0.041	0.035	0.4059	0.739
: 🗠	1 :6	21 0.014	0.010	15 000	0.798
		22 0.147	0.147	15.809	0.395
: P !	I (P)	23 0.064	0.066	17.018	0.384
<u>! ! !</u>	1 11	24 -0.022	0.015	17.163	0.443
<u>'</u> L'	1 1	25 -0.004	-0.013	17.168	0.512
· [P ·	'_P'	26 0.065	0.082	18.419	0.495
י םי	יםי ו	27 -0.071	-0.067	19.926	0.463
	יוףי ן	28 0.021	0.028	20.053	0.518
10	ן יני	29 -0.039	-0.035	20.519	0.551
1 b 1	ի հեր	30 0.042	0.053	21.047	0.578
1 b 1	1 111	31 0.039	0.024	21.511	0.608
101	1 11	32 -0.038	-0.008	21.952	0.638
111	1 111	33 -0.010	-0.011	21.986	0.689
· b	1 1	34 0.104	0.094	25.331	0.556
11	1 161	35 -0.034	-0.032	25 700	0.590
	1	36 -0.058	-0.050	26 732	0.586
Tost for	assymptric	data:	ТАРСН	(1 1	1)
Dependent Variable: Method: ML - ARCH (I	DLSPOT Marguardt) - Normal o	distribution		(1)	-, -,
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1)	DLSPOT Marquardt) - Normal o : 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)^2 + C(fistribution nts = 0.7) 17)*RESID(-1)^2*(RESI	D(-1)<0)	- / + /
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(DLSPOT Marquardt) - Normal of : 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1)	aucu distribution nts = 0.7) 17)*RESID(-1)^2*(RESI	D(-1)<0)	
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(' + C(18)*GARCH(Variable	DLSPOT Marquardt) - Normal o : 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)^2 + C((-1) Coefficient	distribution nts = 0.7) 17)*RESID(-1 Std. Error	2*(RESII	D(-1)<0)	Prob.
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C	DLSPOT Marquardt) - Normal o : 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)^2 + C((-1) Coefficient 0.000136	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05	2*(RESII z-Statis	D(-1)<0)	Prob.
Dependent Variable: Method: ML - ARCH (U Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1)	Coefficient 0.000136 -0.597756	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675	2*(RESII z-Statis 1.4079 -6.1198	D(-1)<0)	Prob. 0.1591 0.0000
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1 + C(18)*GARCH Variable C DLSPOT(-1) DLFUTURE	Coefficient 0.000136 -0.000136 -0.000136 -0.000136 -0.597756 -0.000778	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.002001	2*(RESII z-Statis 1.4079 -6.1198 501.22	D(-1)<0) stic 340 (270 (Prob. 0.1591 0.0000
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1) + C(18)*GARCH(1) Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1)	Coefficient 0.000136 -0.597756 -0.597756 -0.597756 -0.597756 -0.597756 -0.597758 -0.593288	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.09297	2*(RESI z-Statis 1.4079 -6.1198 501.22 6.0356	D(-1)<0) stic	Prob. 0.1591 0.0000 0.0000
Dependent Variable: Method: ML - ARCH (U Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE(-1) DLFUTURE(-1) DSTOCK	Coefficient 0.000136 -0.597756 -0.597756 -0.597756 -0.597756 -0.597756 -0.597756 -0.597756 -0.597756 -0.59288 -4.40E-08	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08	2*(RESII z-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963	D(-1)<0) stic 994 (340 (270 (335 (Prob. 0.1591 0.0000 0.0000 0.0000 0.0000
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DSTOCK	Coefficient 0.000136 -0.000136 -0.0003257 -0.0003257	std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109	D(-1)<0) stic 994 (340 (340 (355 (355 (327 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0026
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1 + C(18)*GARCH Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1)	Coefficient 0.000136 -0.000136 -0.000136 -0.000136 -0.597756 -0.000136 -0.597756 -0.003257 -0.003257 -0.002435 -0.002435 -0.002435	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.092001 0.098297 1.76E-08 0.001082 0.001182	2*(RESII z-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596	D(-1)<0) stic 994 (340 (340 (355 (355 (379 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(' + C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(1)	Coefficient 0.000136 -0.597756 0.000136 -0.597756 0.000136 -0.597756 0.002435 -0.058279 -0.42176 4	Jistribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.114341 0.070751	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025	D(-1)<0) stic 994 (340 (355 (327 (579 (596 (Prob. 0.1591 0.0000 0.0000 0.0125 0.026 0.0394 0.6103
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) (PRESAMPLE)	Coefficient 0.000136 -0.000136 -0.0002435 -0.43764 -0.002435 -0.43764 -0.43764 -0.43764 -0.43764 -0.43764 -0.436764 -0.4	std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.097675	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -15075	D(-1)<0) stic 994 (270 (355 (327 (3596 (596 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0102
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1 + C(18)*GARCH(1) Variable C DLFUTURE DLFUTURE DLFUTURE(-1) DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(3) (AP(4))	DLSPOT DLSPOT Warquardt) - Normal of : 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter backcast (parameter b	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092071 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.084582 0.055942	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -6.1025 -6.1025 -1.5972 -6.1127	D(-1)<0) stic 994 270 335 327 335 327 590 590 590 590 590 590 590 590	Prob. 0.1591 0.0000 0.0000 0.0125 0.026 0.0394 0.6103 0.6103 0.0000 0.1102
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(1) + C(18)*GARCH(1) Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(4)	Coefficient 0LSPOT Marquardt) - Normal co 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.0593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219122	Jistribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.0114341 0.070751 0.084582 0.0558422 0.0683232	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -2.4963 -2.4963 -2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072	D(-1)<0) stic 994 (340 (350 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0000 0.1102 0.0000
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(4) AR(5) AR(6)	DLSPOT DLSPOT Warquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.002435 -0.003257 0.002435 -0.003257 0.002435 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772	listribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.0114341 0.070751 0.084582 0.055842 0.055842 0.055842 0.068323 0.036137	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -8.2957	D(-1)<0) stic 940 (270 (355 (360 (379 (596 (590 (596 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0000 0.1102 0.0000 0.0130
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7)	DLSPOT DLSPOT Warquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 6)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.003257 0.0058279 -0.431764 -0.135096 -0.219132 -0.299772 0.039738	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.001182 0.001182 0.001182 0.001182 0.005842 0.068323 0.036137 0.059170	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -6.1025 -1.5972 -6.1177 -3.2072 -8.2953 0.6715	D(-1)<0) stic 994 (340 (340 (355 (355 (356 (590 (590 (590 (590 (590 (590 (590 (590 (591 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394 0.6103 0.0000 0.1102 0.0000 0.0013 0.0000 0.0013 0.0000
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLFUTURE DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS DBASIS DBASIS DBASIS DBASIS AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7)	DLSPOT DLSPOT Warquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 6)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.003257 0.0058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092071 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.001182 0.001182 0.001182 0.001182 0.005842 0.068323 0.036137 0.059170	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -8.2953 0.6715	D(-1)<0) stic 994 (340 (340 (355 (355 (356 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394 0.6103 0.0000 0.1102 0.0000 0.0013 0.0000 0.0013 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7)	DLSPOT DLSPOT Warquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092071 0.098297 1.76E-08 0.001082 0.0114341 0.070751 0.084582 0.055842 0.055842 0.055842 0.055842 0.0559170 Equation	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -6.1025 -6.1025 -6.1177 -3.2072 -8.2953 0.6715	D(-1)<0) stic 994 (340 (270 (355 (359 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394 0.6103 0.0000 0.1102 0.0000 0.1102 0.0000 0.0013 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7)	DLSPOT DLSPOT Marquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter 6)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E 5.56E-06	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.0114341 0.070751 0.084582 0.055842 0.055842 0.055842 0.0559170 Equation 1.18E-06	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1127 -3.2072 -8.2953 0.6715 4.7200	D(-1)<0) stic 994 270 340 270 335 994 0 327 0 0 0 0 0 0 0 0 0 0 0 0 0	Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394 0.0000 0.1102 0.0000 0.0013 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) AR(1) AR(2) AR(1) AR(2) AR(3) AR(4) AR(3) AR(6) AR(6) AR(7) C C RESID(-1)*2	Coefficient 0LSPOT Marquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme of after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.0593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E 5.56E-06 0.820435	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.036137 0.059170 Equation 1.18E-06 0.209236	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072	D(-1)<0) stic 94 640 660 635 679 635 679 6396 6379 6396 6396 6396 6393 6395 6393 6395 635	Prob. 0.1591 0.0000 0.0026 0.0394 0.6103 0.0000 0.01102 0.0000 0.01102 0.0000 0.0113 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (U Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(3) AR(4) AR(5) AR(6) AR(7) C C RESID(-1)*2*(RESID(-1)*2 RESID(-1)*2*(RESID(-1))*2*(RESID(-	DLSPOT DLSPOT Warquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme of after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E 5.56E-06 0.820435 -0.0259	Jistribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.055842 0.068137 0.059170 Equation 1.18E-06 0.209236 0.337336 0.05555	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -0.5096 -6.1025 -1.5972 -6.1177 -3.2053 0.6715 4.7200 3.9211 1.1068 -0.1003	D(-1)<0) stic 94 340 355 355 360 355 360 355 360 355 360 355 360 360 355 360 360 355 360 360 360 360 360 360 360 360	Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0000 0.1102 0.0000 0.01102 0.0000 0.013 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID(-1)*2 GARCH(-1)	Coefficient DLSPOT Marquardt) - Normal of: 990M10 2012M12 9: 18:59 990M10 2012M12 s: 267 after adjustme od after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance B 5.56E-06 0.820435 -0.373393 -0.005296	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.0114341 0.070751 0.084582 0.055842 0.055842 0.055842 0.055842 0.055842 0.055842 0.055842 0.055842 0.0559170 Equation 1.18E-06 0.209236 0.337336 0.052585	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -6.1025 -6.1025 -6.1177 -3.2072 -8.2953 0.6715 4.7200 3.9211 1.1068 -0.1007	D(-1)<0) stic 994 (340 (270 (355 (327 (376 (294 (396 (590 (296 (294 (396 (593 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0000 0.1102 0.0000 0.013 0.0000 0.5018 0.0000 0.5018
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLFUTURE DLFUTURE DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(2) AR(3) AR(4) AR(2) AR(6) AR(6) AR(7) C RESID(-1)*2*(RESID GARCH(-1) R-squared	DLSPOT DLSPOT Marquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter backcast (parameter bac	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.01182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.036137 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -8.2953 0.6715 4.7200 3.9211 1.1068 -0.1007 dent var	D(-1)<0) stic 994 340 270 660 927 679 679 679 679 679 679 679 67	Prob. 0.1591 0.0000 0.0000 0.0026 0.0394 0.0000 0.1102 0.0000 0.0013 0.0000 0.5018 0.0000 0.5018 0.0000 0.5018 0.0000 0.0001 0.2683 0.9198 0.3610
Dependent Variable: Method: ML - ARCH (I) Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE(-1) DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(2) AR(3) AR(4) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID) GARCH(-1) R-squared Adjusted R-squared	DLSPOT DLSPOT %arquardt) - Normal c 18:59 990M10 2012M12 s: 267 after adjustme od after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.0593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.299772 0.039738 Variance E 5.56E-06 0.820435 -0.073393 -0.092751 0.997751 0.997751 0.997751	Jistribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.036137 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5006 -0.5096 -0.50	D(-1)<0) stic 94 340 270 335 027 396 396 396 396 396 396 396 396	Prob. 0.1591 0.0000 0.0000 0.0125 0.0026 0.0394 0.6103 0.0000 0.01102 0.0000 0.01102 0.0000 0.01102 0.0000 0.0013 0.0000 0.0001 0.2683 0.9198
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID(-1)*2 RESID(-1)*2*(RESID(-1)*2) GARCH(-1) R-squared Adjusted R-squared S.E. of regression	USSyntectife DLSPOT Marquardt) - Normal of: 18:59 990M10 2012M12 5: 267 after adjustme adater 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance B 6.556E-06 0.820435 -0.005296 0.997751 0.997636 0.003933	listribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.092001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.0114341 0.070751 0.084582 0.055842 0.055842 0.055842 0.0559170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend S.D. dependo	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -6.1025 -6.1025 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1197 -6.1197 -6.1198 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5097 -6.1198 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.1007 -0.10	D(-1)<0) stic 940 (270 (360 (370 (Prob. 0.1591 0.0000 0.0000 0.0125 0.0394 0.6103 0.0000 0.1102 0.0000 0.013 0.0000 0.013 0.0000 0.013 0.0000 0.013 0.0000 0.0013 0.0000 0.0001 0.2683 0.9198 0.3610 0.80884 874637
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLFUTURE DLFUTURE DLFUTURE(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID GARCH(-1) R-squared Adjusted R-squared S.E. of regression	DLSPOT DLSPOT Marquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme ed after 289 iterations backcast (parameter backcast (parameter bac	Jistribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.001182 0.001182 0.001182 0.001182 0.001182 0.0058423 0.036137 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend Akaike info c Schwarz crite	2-Statis 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -8.2953 0.6715 4.7200 3.9211 1.1068 -0.1007 dent var ent var iterion	D(-1)<0) stlic 994 6270 630 6270 635 629 629 639 6226 639 629 639 6 6 99 6 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Prob. 0.1591 0.0000 0.0000 0.0026 0.0394 0.0000 0.1102 0.0000 0.01102 0.0000 0.0013 0.0000 0.5018 0.0000 0.0001 0.2683 0.9198 0.3610 0.8884 74637 32800
C Dependent Variable: Method: ML - ARCH (I) Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(2) AR(3) AR(4) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID) GARCH(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	DLSPOT DLSPOT %arquardt) - Normal c : 18:59 990M10 2012M12 s: 267 after adjustme od after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.0593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E 5.56E-06 0.820435 -0.005296 0.997751 0.9977536 0.0997636 0.003914 1136.014	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.036137 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend Akaike info co Sch.warz crite Hannan-Quir	2*(RESII 2-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5006 -0.5096 -0.50	D(-1)<0) stic 94 340 270 335 600 335 600 335 600 600 600 600 600 600 600 60	Prob. 0.1591 0.0000 0.0000 0.0125 0.026 0.0394 0.6103 0.0000 0.01102 0.0000 0.01102 0.0000 0.01102 0.0000 0.01102 0.0000 0.01102 0.0000 0.013 0.0000 0.0013 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0125 0.0000 0.0125 0.0026 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.01125 0.0000 0.0000 0.0125 0.0000 0.0125 0.0000 0.0000 0.0125 0.0000 0.0000 0.0125 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000000
Dependent Variable: Method: ML - ARCH (I) Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DLFUTURE(-1) DLFUTURE(-1) DSTOCK DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(3) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID GARCH(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	DLSPOT DLSPOT %arquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme of after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.593288 -4.40E-08 -0.003257 0.002435 -0.058279 -0.431764 -0.135096 -0.341622 -0.219132 -0.299772 0.039738 Variance E 5.56E-06 0.820435 -0.005296 0.997751 0.9977536 0.0997636 0.003914 1136.014 2.060426	distribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.097675 0.002001 0.098297 1.76E-08 0.001082 0.001182 0.0114341 0.070751 0.084582 0.068323 0.055842 0.068323 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend Akaike info c Schwarz crite Hannan-Quir	2*(RESII z-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5097 -0.5097 -0.5097 -0.5097 -0.5097 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5097 -0.5097 -0.5097 -0.5097 -0.5097 -0.5097 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5096 -0.5097	D(-1)<0) stic 94 340 0 35 0 94 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Prob. 0.1591 0.0000 0.0025 0.025 0.0394 0.6103 0.0000 0.01125 0.0394 0.6103 0.0000 0.01102 0.0000 0.01102 0.0000 0.01102 0.0000 0.013 0.0000 0.0013 0.0000 0.0013 0.0000 0.0001 0.2683 0.9198 003610 0.9198 003610 0.27493
Dependent Variable: Method: ML - ARCH (I Date: 06/04/13 Time Sample (adjusted): 1 Included observation: Convergence achieve Presample variance: GARCH = C(15) + C(+ C(18)*GARCH(Variable C DLSPOT(-1) DLFUTURE DLFUTURE(-1) DSTOCK DBASIS DBASIS DBASIS(-1) AR(1) AR(2) AR(3) AR(4) AR(2) AR(4) AR(5) AR(4) AR(5) AR(6) AR(7) C RESID(-1)*2*(RESID(-1)*2 RESID(-1)*2*(RESID(-1)*2 RESID(-1)*2*(RESID(-1)*2 RESID(-1)*2*(RESID(-1)*2) GARCH(-1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	DLSPOT DLSPOT Marquardt) - Normal of 18:59 990M10 2012M12 s: 267 after adjustme of after 289 iterations backcast (parameter 16)*RESID(-1)*2 + C((-1) Coefficient 0.000136 -0.597756 1.002778 0.002435 -0.003257 0.002435 -0.058279 -0.431764 -0.341622 -0.219132 -0.219132 -0.299772 0.039738 Variance E 5.56E-06 0.820435 -0.005296 0.997751 0.997636 0.003914 1136.014 2.060426 .64- 62i	listribution nts = 0.7) 17)*RESID(-1 Std. Error 9.67E-05 0.097675 0.097675 0.098297 1.76E-08 0.001082 0.001082 0.001182 0.0114341 0.070751 0.084582 0.055842 0.068323 0.055842 0.068323 0.055842 0.055842 0.068323 0.059170 Equation 1.18E-06 0.209236 0.337336 0.052585 Mean depend Akaike info cl Schwarz crite Hannan-Quir	2*(RESII z-Statis 1.4079 -6.1198 501.22 6.0356 -2.4963 -3.0109 2.0596 -0.5096 -6.1025 -1.5972 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1177 -3.2072 -6.1107 dent var ent var ent var ent var iterion in criter.	D(-1)<0) stic 994 6340 635 60 635 639 639 639 639 639 639 639 639 639 6 6 6 6	Prob. 0.1591 0.0000 0.0000 0.0025 0.025 0.0394 0.6103 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0125 0.0000 0.0000 0.0125 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000