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Abst r act

W study a variant of the Stochastic Economi c¢ Lot Scheduling Problem
(SELSP) in which a single production facility must produce several
grades to neet random stationary denmand for each grade from a common
fini shed-goods (FG inventory buffer with linmted storage capacity.
Demand that can not be satisfied directly frominventory is |lost. Raw
material is always available, and the production facility produces at
a constant rate. Wwen the facility is set up to produce a particular
grade, the only allowable changeovers are from that grade to next
lower or higher grade. Al changeover tinmes are determnistic and
equal to each other. There is a changeover cost per changeover
occasion, a spill-over cost per unit of product in excess, whenever
there is not enough space in the FG buffer to store the produced
grade, and a lost-sales cost per unit short, whenever there is not
enough FG inventory to satisfy demand. W nodel the SELSP as a
di screte-tine Markov Decision Process (MDP), where in each tinme period
we nust decide whether to initiate a changeover to a nei ghboring grade
or keep the setup of the production facility unchanged, based on the
current state of the system which is determined by the current setup
of the facility and the FG inventory levels of all the grades. The
goal is to mnimze the infinite-horizon |ong-run average cost. For 2
and 3-grade problens we can nunerically solve the resulting MP
probl em using successive approxinmation. For problenms with nore than
three grades, we develop a heuristic solution which is based on
approximating the original multi-grade problem into many 3-grade sub-
problems and nunerically solving each sub-problem using successive
approxi mation. W present and discuss nunerical results for incidences
with 2, 4 and 5 grades, using both the exact nunerical and the
heuristic solution procedure.

Keywor ds: Stochastic econonmic |ot sizing problem Dynam c scheduling,
Process industry, Markov decision process
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| nt roducti on

Schedul i ng production of multiple products, each with random denmand,

on a single facility with I[imted production capacity and significant

changeover costs and tinmes between products is a classic problem in
production planning research that is often referred to as the
Stochastic Lot Scheduling Problem (SLSP). Sox et al. (1999)

di stingui shes between two versions of the SLSP: the Stochastic
Econom c Lot Scheduling Problem (SELSP) and the Stochastic Capacitated
Lot Sizing Problem (SCLSP), for consistency with the determnistic
demand literature. The SELSP assunmes an infinite planning horizon and
stationary demand, whereas the SCLSP assunes a finite planning horizon
and allows for non-stationary demand. The SELSP is better suited for

conti nuous-processing nmanufacturing, whereas the SCLSP is nore
appropriate for di screte-parts manuf act uri ng. Di screte-parts
manufacturing is characterized by individual parts that are clearly
di stingui shable and is often encountered in the industries of conputer

and electronic products, el ectrical equi prent and appliances,

transport equipnment, nachinery, fabricated nmetal, wood, furniture
products, etc. Process industries, on the other hand, operate on
material that is continually flowing, as is the case with petrol eum
and coal products, netallurgical products, non-netallic mneral

products, food and beverage products, paper products, etc. Cenerally,

process industries are capital intensive and focus on high-volune,

| owvariety production. In a typical process industry, the production
facility operates continuously, and the different products are really
variants of the sanme famly that differ in one or nore attributes,

such as grade, quality, size, thickness, etc. Oten, the different

grades are related in such a way that the only allowabl e changeovers
are fromone grade to the next higher or |ower grade in the chain. For
exanple, if the facility produces three grades, A, B, and C — A being
the lowest and C being the highest — the allowable changeovers are
between A and B, between B and C, but not directly between A and C

The deterministic version of the SELSP, the so-called ELSP has
received considerable attention (e.g., see the surveys of El naghraby,

1978 and Sal onon, 1991). Both analytical and heuristic solutions for
the ELSP derive rigid cyclic production plans, which in many multi-

grade plants take the form of rigid product slates or wheels, whereby
all grades are produced sequentially in a cycle, starting from the
| owest grade, going up all the way to the highest grade, and returning

down to the lowest grade. In the previous exanple with the three
gr ades, a conplete product grade slate would be A-B-CB-A
Unfortunately, cyclic plans do not work well for the stochastic

problem for two reasons. They focus on lot-sizing and not on dynamc
capacity allocation and the inventories of finished products serve not
only to reduce the nunber of changeovers but also to hedge against
stock-outs. In the stochastic problem both lot-sizing and capacity
al |l ocation have to be considered sinultaneously, and the dynam cs have
to be included in the plan (Gaves, 1980).

In this paper, we study a variant of the SELSP in which a single
production facility nust produce several grades to neet random
stationary denand for each grade from a comon finished-goods (FQ
inventory buffer with [inmted storage capacity. Demand that can not be
satisfied directly from stock is lost. Raw naterial is always
avail able, and the production facility produces at a constant rate all
the tinme. When the facility is set up to produce a particul ar grade,
the only allowable changeovers are from that grade to next |ower or
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hi gher grade. In nmany industries, it is customary to divide the
i nternmedi ate grade produced during a changeover, say from grade A to
grade B, into two halves, and classify the first half as A and the
second half as B, although in reality the grade of the product com ng
out of the production facility may gradually change from grade A to
grade B. In this paper, for sinplicity, we assume that the grade
produced during a changeover from A to B is classified as A and the

grade produced during the reverse changeover, from B to A is
classified as B. Under this assunption, the anmpunts of grades A and B
that will be produced in the long run will be the same as those that

woul d have been produced had we divided the produced grade during a
changeover into two halves. W also assune that all changeover tines
are determnistic and equal to each other. The cost structure of our
nodel includes a changeover cost per changeover occasion, a spill-over
cost per unit of product in excess, whenever there is not enough space
in the FG buffer to store the produced grade, and a |ost-sales cost
per unit short, whenever there is not enough FG inventory to satisfy
demand. The assunptions presented above are realistic and are based on
a real dynam c scheduling problem of a PET processing plant, presented
i n Liberopoulos et al. (2009).

We nodel the SELSP problem described above as a discrete-tinme Markov
Decision Process (MDP), where in each tine period the decision is
whether to initiate a changeover to a neighboring grade or keep the
setup of the facility unchanged, based on the current state of the
system which is determned by the current setup and the FG inventory
levels of all the grades. The goal is to minimze the infinite-horizon
| ong-run average cost.

Because of its theoretical and practical inportance, the SELSP probl em
has received considerable attention in the literature. A conprehensive
review of related works can be found in Sox et al. (1999) and W nands
et al. (2005). Fromthese reviews, it is apparent that there have been
two approaches to the SELSP. One approach is to develop a cyclic
schedul e using a determ nistic approxinmation of the stochastic problem
and develop a control rule for the stochastic problem to pursue this
schedul e. The other approach, which we follow in this paper, is to
devel op a dynam c schedule that determ nes which product to produce
based on the current state of the system

One of the first papers that |ooked at the SELSP as a discrete-tine
stochastic control problem with dynamc sequencing is Gaves (1980)
Graves first solves a one-product problem with inventory-backorder
costs and changeover costs, but no changeover tinmes, where the
decision in each period is to produce or idle the facility. He then
uses the solution of the one-product problem as the basis for a
heuristic procedure to solve the multi-product problem |In that
heuristic, scheduling conflicts anmong different products are solved by
conparing the value functions derived for each individual and
“conposite” product from the one-product analysis. The conposite
product is a concept that Gaves introduces to help anticipate
possi bl e scheduling conflicts in the multi-product problem The idea
is that the conposite inventory of several products should indicate
the need for current production, in case the individual product
inventories are deened just adequate when viewed separately.

Qu and Loulou (1995) Ilook at a problem wth Poisson denand,
determ nistic processing and changeover tines, and changeover and
i nventory-backl og costs. They nodel the problem as a semn-Markov
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deci sion process, where the objective is to decide in each review
epoch which product, if any, to set up the facility to produce, in
order to minimze the infinite-horizon, discounted cost. The review
epochs are those points in tinme when either the production facility is
idle and sone demand arrives, or when a part has just been processed
and the production facility is free. They use successive approxi nmation
to generate near-optinmal control policies by solving the problem on a
truncated inventory space, and conpute error bounds caused by the
truncati on. They present nunerical results for two-product problens,
and state that systens with nore than two products are limted by the
curse of dinensionality.

Leachman and Gascon (1988) develop a dynamic, periodic review control
policy that determ nes which products to produce and how much, based
on solutions of determnistic ELSP that account for non stationary
demand. This solution is nodified if two or nmore products are close to
bei ng stocked out or are backordered.

Finally, Sox and Mickstadt (1997) and Karmarkar and Yoo (1994) devel op
finite-horizon stochastic nathematical programmng nodels for the
SELSP, that can also be classified as SCLSP, wth determnistic
production and changeover tinmes, and use Lagrangian relaxation for
finding optimal or near-optinmal solutions for problens of small sizes.

Qur work in this paper follows the stream of papers that view the
SELSP as a discrete-tinme periodic-review control problem with dynamc
production sequencing and global lot sizing, and is nobst closely
related to Graves (1980) and Qu and Loulou (1995). It differs from
previous works in that it considers a new variant of the SELSP, where
the only all owabl e changeovers are fromone grade to the next |ower of
hi gher grade. The latter feature renders problens with a |arge nunber
of grades anenable to heuristic solution procedures that are based on
approximating the original problem by nmany smaller (i.e., with fewer
grades) sub-problens that are conputationally easier to solve. Thus,
for two-grade and three-grade problems we are able to nunerically
solve the resulting NMDP problem using successive approximtion, and
obtain insight into the optimal control policy. For problenms with N
grades, where N > 3, we develop a heuristic solution which is based on
deconposing the original Ngrade problem into (N - 2) 3-grade sub-
problems and nunerically solving each sub-problem using successive
approxi mation. Each 3-grade sub-problem is an approximtion of the
original Ngrade problem where the nmiddle grade in the sub-problem
corresponds to one of the grades in the original problem the |ow
(left) grade in the sub-problemis the conposite of all grades in the
original problem that are |lower than the middle grade, and the high
(right) grade is the conposite of all grades that are higher than the
m ddl e grade. For exanple, if the original problem consists of five
grades, A-B-CDE we fornulate the follow ng 3-grade sub-problens: A-
B- (C+D+E), (A+B)-C-(D+tE), and (A+B+C)-D-E, where the notation “(A+B)”
i ndicates the conposite grade formed by grades A and B. After solving
all the sub-problens, the heuristic control policy for the original N
grade problem is obtained by conbining parts of the optimal policies
of the sub-problens.

The rest of this paper is organized as follows. In Section 0, we
present the stochastic dynanmi c progranmng fornulation and sol ution of
the MDP nodel of the original N-grade problem The heuristic procedure
for solving problens with nore than three grades is outlined in
Section 0. Finally, nunerical results for problemincidences with 2, 4
and 5 grades, wusing both the exact numerical and the heuristic
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solution procedure are presented in Section 0, and conclusions are
drawn in Section O.

Probl em Fornul ati on and Dynam c¢ Progranmm ng Sol ution

We consider a discrete-time nodel of a production facility that can
produce N different grades, one at a tinme. Gade changeovers are only
al | oned between nei ghboring grades, n and n + 1, n =1, ., N - 1. The
changeover time is one period. In each tine period, the production
facility produces P units of the grade that is was set up for at the
begi nning of the period. The quantity produced is stored in a comon
FG buffer with a finite storage capacity of X units; any excess anpunt
that does not fit in the buffer is spilled over, incurring a spill-
over cost of CS per unit of excess product. The FG buffer is flexible
in that it can contain any quantity of any grade at the same tinme, as
long as the total anount does not exceed X After the quantity
produced by the facility has been added to the FG buffer, a vector of
random demands D ° (Dy, ., Dy must be net from FG inventory. The
demand for grade n, D,, n =1, ., N, is a discrete randomvariable with
known stationary joint probability distribution. For each grade n, the
part of the demand that can not be satisfied from FG inventory, if
any, is lost, incurring a lost-sales cost of CL, per wunit of
unsatisfied demand. In many real problens, P is not considered as a
control variable for scheduling purposes, because changing P nmay cause
instabilities in the production process. In this paper, we assune that
P is fixed and equal to (or close to) the total expected denmand for
al | grades.

We fornulate the dynam c scheduling problem of the production facility
as a discrete-time MDP, where the state of the system at the beginning
of each period is defined by the vector y ° (s, Xi, .., Xy, where s is
the grade that the facility is set up for during that period and x, n
=1, ., N is the FG inventory level of grade n at the beginning of
the period. Note that s T {1, ., N, and the set of allowable
inventory levels is determined by all integers x, n =1, ., N such
that 0 £ 5, x, £ X. Thus, the size of the state space is ¥NX". The
decision, u, to be made at the beginning of each period is whether to
initiate a changeover to a neighboring grade or leave the facility
setup unchanged. Thus, if the current setup is s, the allowable
decisions are given by the set Us), where U(1) = {1, 2}, UN = {N -
1, N}, and Us) ={s -1, s, s + 1}, s =2, ., N—- 1. If the decision
is toinitiate a changeover, then this changeover will be in effect at
t he begi nning of the next period. A decision to initiate a changeover
at the beginning of a period incurs a changeover cost CC in that
period. Suppose that the state of the system at the beginning of a
period is y, decision u is taken, and demand D is realized. Let
g(y,u,D) be the cost incurred during that period and let y¢° (s¢ x;¢
. XN = f(y,u,D) be the state of the system at the beginning of the
next period. Fromthe above discussion, it is clear that s¢ = u and x,¢
= [Xn + p(Y)An=s — D], n=1, .., N where p(y) is the anount added to
the FG buffer after the facility produces P units and before the
demand is satisfied and is given by p(y) © mn{P, X - 32, Xp}, lais the
indi cator function which takes the value of 1 if a is true, and O
otherwise, and [x]" °© nax{0, x}. Moreover, g(y,u,D) = COt s + CSXP —

P(Y)) + Zn CLE Dy — Xn — P(Y) % n=s ]
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The objective is to find a state dependent policy u = pu(y) that
mnimzes the long-run (infinite-horizon) expected average cost per
period, denoted by J. To find such a policy we need to solve the so-
called Bellman equation, which can be witten as J + V(y) =
mngys) Tu(V(y)), where V(y) is the differential cost starting from
state y, and the operator Ty(»® is defined as Ty(V(y)) ° Ex{ g(y,u,D +
V(y9}. The mnimzer in the Bellman equation determ nes the optinal
policy when the systemis in state y, denoted by p'(y).

W solve the Bellman equation by the nethod of successive
approxi mations. W denote by Vi(y) the value of the differential cost
function at the kth iteration. Initially, we set Vo(y) = 0 " y. The
values at the (k + 1)th iteration are obtained from the previous
iteration by the recursion Viu(y) = T(V(y)) — T(V(¥)), where T(Vk(y))
= mngys) Tu(Vk(y)) and § is an arbitrarily chosen special state. Note
that in each iteration the differential cost for the special state is
reset to zero. Assuming that the iteration schene converges to sone
values V(y), then from the recursion equation, these values nmnust
satisfy T(M§g)) + V(y) = T(V(y)). A conparison of this equation and
the Bell man equation reveals that J = T(V(9)).

To inplenent the successive approximation nmethod, at each iteration k
= 1, 2, .. we conpute the maximum and nininmum differences, W' =
maxy{ Vk(y) - Vka(y)} and W = ming{Vi(y) — Vku(y)}. The procedure is
termnated when VY — V' < eT(Vi(9)), where ¢ is sone small positive
scal ar.

Heuri stic Sol uti on

Al though the exact nethod presented in the preceding section can in
principle determne the optimal policy for any nunmber of grades, it
becones conputationally intractable for nmore than three grades. In
this section, we present a heuristic procedure that approxinmtes any
N-grade problem N > 3, by several 3-grade sub-problens and then uses
the sub-problem solutions (determned by the exact nunerical method)
to construct a heuristic policy for the original problem Mre
specifically, the heuristic procedure works as follows. Let S denote
the original N-grade problem Then, for each grade n, n =2, ., N -1,
we fornulate a 3-grade sub-problem denoted by S,, in which the mddle
grade is grade n, the low grade is the conposite of all grades that
are lower than n, i.e., grades 1, .., n — 1, and the high grade is the
conposite of all grades that are higher than n, i.e., grades n + 1, .,
N; hence S, is an approxinmation of the original problem S. For each
sub-problem S,, we define the state of the system by the vector y, =
(Sn Wh, Xn, Zn), Where s, 1 {1, 2, 3} and w, and z, are the total
inventory levels of the low and high conposite grades, respectively,
and are given by w, °© Xy + ...+ Xpq1 and z, ° Xpig + ...+ XN N each sub-
problem S,, the demand distribution of the mddle grade is the sane as
the demand distribution of grade n in the original problem the demand
distribution of the low grade is the convolution of the demand

distributions of grades 1, .., n — 1 in the original problem and the
demand distribution of the high grade is the convolution of the demand
distributions of grades n + 1, .., N in the original problem W use

the exact nmethod to obtain the optimal policy u,(y,) of sub-problemsS,.
The heuristic policy for the N-grade problem denoted by u(y), is then
constructed by wusing parts of the optimal policies of the sub-
problems, as follows: u(1l, X1, .., Xy = m2 (1, @, X2 22), u(N X1, ..,
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Xn) = bns (3, Wnen, Xn, Ener), and p(n, Xy, .. X)) = e (2, Wn, Xn, Zn), N
=2, ..., N-1, where w, and z, are the “aggregate” inventory |evels of
the |low and high conposite grades, respectively, which represent in
sone aggregate way their individual conponents and hence are given by
Wn = h(Xy, .., Xnpo1) and zp = h(Xps1, ... Xn) for some appropriate function
h, which will be defined next.

First, note that %, = x; and Zyi = X\ because in these cases the
conposite grade corresponds to a single grade. W now focus on w, n >
2, as z, is obtained in exactly the sane way. An obvious choice for the
aggregate inventory |evel of the conposite grade nmade up of grades 1,
... n — 1 is the sumof the inventory levels of the individual grades,
i.e., W, = Ww,. This is a reasonable choice, especially with respect to
estimating potential spill-over costs, but nmay underestimate the
possibility of lost sales when one or nore of the individua

conponents of the conposite grade is very low conpared to the others.
To illustrate this, suppose that the facility is currently set up to
produce grade 4, and that the inventory levels of grades 1-4 are x; =
X, = 15, x3 = 0, and x4 = 6. Then, in sub-problem S;, the inventory
level of the mddle grade would be x4, = 6, and the total inventory
level of the |ow conposite grade would be wy, = Xx; + X + x3 = 30. In
this case, the optinmal policy obtained by solving S, might indicate
that it is optimal for the facility not to changeover to the |ow
conposite grade, because there is enough of it (30 units) in storage
conpared to the inventory level of the nmddle grade 4, which is nuch
lower (6 units). Wiat the heuristic fails to see in this case is that
al though the sum of the inventory levels that make up the conposite
grade is relatively high, one of its conponents, nanely xs; 1is zero,
and unless the facility changes over to grade 3, a heavy stock-out
penalty is likely to be incurred in the current and in the follow ng
peri od.

To take into account such a situation, we seek an aggregate inventory
| evel, @, for the conposite grade made up of grades 1, ., n — 1 that
would result in the same value of the expected lost sales for that
conposite grade as that conputed by summ ng the expected | ost sal es of
the individual conponent grades of the conposite. The sum of the
expected | ost sales of the individual grades is given by LS = E[D, -
X1] " + ...+ E[Dy1 — Xn1]". The expected lost sales for a given inventory
level w of the conposite grade is equal to E (D + ...+ Dy1) — W5
therefore, @, is the value of w that makes the latter expression as
close as possible to LS. To conpute this expression we first need to
derive the probability distribution of the aggregate grade demand by
convolution of the probability distributions of individual grade
demands. In case this is not conputationally convenient we propose the
followi ng faster alternative.

We approximate the sum of the expected lost sales of the individual
grades by LS = [E(D) - x4% + ...+ [E(D1) — Xpa]® If all inventory
levels x; are large enough so that LS = 0, we set #, = w,. Oherwise,
we define &, = [E(D) + ...+ E(D,.1)] — LS, and we set @w, to be a linear
conbination of &, and w, i.e., %, = «&, + (1 — o)w, , rounded to the
nearest integer, for some 0 £ o £ 1.
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Nunerical Results

In this section, we present nunerical results for problem exanples
with 2, 4 and 5 grades, using both the exact nunerical and the
heuristic solution procedure presented in the previous sections.
First, we look at a 2-grade exanple (N = 2), where P = 5 and the
denmand distribution for the two grades is given in Table 1

Tabl e 1: Demand distribution of the 2-grade exanple

Pr(D,=i)
n\i 0 1 2 3 4 5 6 E®Dy
1 01 01501502 01501501 3
2 01501504 0150150 O 2

Table 2 shows the nunmber of iterations of the successive
approxi mation procedure until convergence, denoted by k¢, for
convergence tolerance criterion ¢ = 0.001, and the resulting optinal
| ong-run average cost, J, for various conbinations of space capacity,
X, and cost paraneters, where it is assunmed that both grades have the
sane lost-sales cost rate, i.e., CL; = CL, = CL. Fromthe results, is
can be seen that as X increases, k. increases and J decreases, as is
expected. J also increases as the cost paraneters increase.

Tabl e 2: Results for the 2-grade exanple
X =40 X =60 X =80 X =100
Case CC CS CL k. J ke J ke J ke J
1 5 5 186 09824 474 0.618 895 0.4503 1447 0.3%4
1 10 10 188 1.7454 472 1.0965 891 0.7985 1444 0.6277
2 5 5 179 11640 448 0.7342 844 05354 1367 0421
5 10 1 181 16842 437 1.0682 806 0.7806 1286 0.6146
5 1 10 211 16933 515 1.074 956 0.7848 1538 0.6178
2 10 10 186 19648 474 12361 895 0.9006 1447 0.7079
10 1 1 340 1.1409 369 0.7536 408 0.5587 588 0.4445
10 5 10 168 27141 411 17277 761 1.2644 533 0.9962
1 10 5 225 13610 555 0.855 1032 0.6228 1659 0.4896
1 5 10 253 13679 632 0.8593 1184 0.626 1908 0.4921

Boo~vwourwnk

Figure 1 shows the optinmal changeover policy as a function of
inventories x; and x,, for cases 1 and 3 of Table 2, for X = 40, and is
representative of the other cases as well.

s 0 E3 w0 5 (] 5 ) 15
X X

Figure 1: Optimal changeover policy for cases 1 (left) and 3 (right)
of Table 2, for X = 40
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In both cases 1 and 3, the optimal policy partitions the inventory
space in several regions, each characterized by a different optinal
changeover action. If we let u'(s, R denote the optimal policy when
the facility is set up to produce grade s and the inventory levels are
in region R then u'(1, a) = p'(2, a =1, p(1, b) = u(2, b = 2
u'(1, ¢c) =1, uw(2, ¢ =2, u(1, d =2, u(2, d = 1. Thus, the
optimal policy dictates the following actions: Wen the inventory
levels are in region a, changeover to produce grade 1, when in b,
changeover to produce grade 2, when in c, do not changeover, and when
in d, changeover to the other grade. A typical production sequence
when the inventory levels are in and around region d would be one
where the facility changes over from one grade to the other in each
period. When the inventory levels are in region c, the facility would
be producing grade 1 in successive periods until the inventory |evels
cross the border between regions ¢ and b and then changing over to
grade 2 and producing that grade until the inventory levels cross the
border between regions ¢ and a. Notice that region c is wider in case
3 than in case 1, indicating that in case 3 it is optimal to produce
I onger runs of the two grades with |ess frequent changeovers, because
t he changeover cost in case 3 is twice as much as in case 1. In fact,
the widening of region ¢ in case 3 is big enough to elimnate region
d. Another observation is that the inventory space partition is nore
or less symmetric for the two grades but with a slight displacenent in
favor of grade 1, because grade 1 has a higher denmand than grade 2.
Next, we look at a 4-grade (N = 4) and a 5-grade (N = 5) exanple. In
each exanple, we assunme that the demand for each grade is identically
distributed to one of the randomvariables O, j = A B, .. E F, whose
distributions are given in Tabl e 3.

Tabl e 3: Demand distributions for the 4-grade and 5-grade exanpl es

Pr(D, =)
N0 1 2 3 ED)
A 065 0.25 0.05 005 05
B 04 05 005005 075
C 02505 0250 1
D 02502505 0 125
E 025025 025 025 15
F 00502 04503 2

For each exanple, we consider four cases, each with a different demand
pattern that captures a different way that total demand is distributed
anmong the individual grades. In each case, the total expected denmand
is equal to the production rate. First, we solve each case optimally
by dynam c progranming, using £ = 0.001. Then, we solve each case by
the heuristic. In the inplenmentation of the heuristic we use the
faster alternative to approxinmate the sum of the expected |ost sales
of the individual grades, described at the end of Section 0, for
values of o ranging fromO to 1 with a step of 0.1. In all cases we
assune that cC =1, ¢S =CL,, =1, n=1,., 5 and P = 6. The results
for the 4-grade exanple, for X = 30, are shown in Table 4. The
notation “F,CF,C in colum 2 is used to indicate that D; is
distributed as DO, D, is distributed as D, etc. The conputational
(CPU) times are in hours. For the heuristic, we show the total CPU
tine it takes to solve the 3-grade problens and generate the heuristic
policy, but not the time it takes to evaluate the heuristic policy.
The optimal value of o in the heuristic is denoted o and the
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correspondi ng | ong-run average cost is J(a'). The last colum shows the
percent age cost increase between the heuristic and the optinmal policy.

Tabl e 4: Results for the 4-grade exanple

Demand Exact Heurigtic % cost

Case patten k. CPU  J o CPU J) Difference
1 FCFC 187 5241 11835 0.1 0.024 1.3207 11.59
2 FCCF 110 41.84 12831 0.1 0.0%4 1.3139 1.96
3 C/FFC 55 21.57 1.0034 0.7 0.024 1.2442 24.00
4 FFCC 156 4822 1.0927 0.5 0.038 1.2253 12.13

From the results, we observe that cases 1 and 2 have higher expected
costs conpared to cases 3 and 4. This is because in the latter two
cases the grades with the highest demands are adjacent in the sequence
of allowed changeover transitions, while in the first two cases any
transition between those two grades has to go through other grades

thus incurring higher switching costs. In all cases, except case 3,
the heuristic average cost is insensitive to paraneter o. Case 3 tends
to have lower cost for o between 0.5 and 0.8 and significantly higher
cost for o between 0.9 and 1. The cost difference between the
heuristic and the exact solution is 1.96% for case 2, where the end
grades 1 and 4 have the highest demand, and 24% for case 3, where the
mddle grades 2 and 3 have the highest demand. The heuristic is
bet ween 700 and 2,000 tines faster than the exact solution

The results for the 5-grade exanple, for X = 20, are shown in Tabl e
5. Cases 2 and 3 have higher average costs because they require nore
product switches to nove between products with the highest denmands. A
significant difference with the 4-grade exanple is that the heuristic
average cost seenms to be an increasing function of « which nmeans that
the best heuristic policy is obtained when &%, = w,. The cost difference
between the heuristic and the exact solution is between 10% and 20%in
all cases, and the heuristic is between 3,000 and 120,000 faster than
the exact sol ution.

Tabl e 5: Results for the 5-grade exanple

Demand Exact Heurigtic % cost
Case pattern kk CPU J o CPU J@) Increase
CCFCC 48 3227 2944 0 0.010 3414 15.96
EDADE 87 14277 4076 0 0.014 4918 20.66
E,B,E,B,E 65 12551 3851 O 0.023 4.293 11.48
B,D,FDB 35 38.05 2652 0.1 0.008 3.036 14.48
F,D,D,B,B 71 7870 3.002 0.1 0.004 3.451 14.96
FD,BB,D 129 36940 3492 0 0.003 3.876 11.05
FB,D,B,.D 129 14030 3.657 0 0.003 3.935 7.59

~NOoO O WN PP

Concl usi ons

W studied a variant of the SELSP in which a single production
facility must produce several grades to neet random demand for each
grade froma common FG inventory buffer with limted storage capacity.
The only allowable changeover of the facility is from one grade to
next |ower or higher grade. Al changeover tines are determnistic. W
nodel ed this problemas a discrete-tine MDP, where in each tinme period
it must be decided whether to initiate a changeover to a nei ghboring
grade, based on the current state of the system The goal is to
mnimze the infinite-horizon |ong-run average changeover, spill-over
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and |ost-sales cost. For 2-grade and 3-grade problens we proposed to
nunerically solve the resulting MDP problem wusing successive
approxi mation. For problens with nmore than three grades, we devel oped
a heuristic solution which is based on approximting the original
nmul ti-grade problem into nmany 3-grade sub-problems and nunerically
sol ving each sub-probl em using successive approximtion. W presented
nunmerical results for problemincidences with 2, 4 and 5 grades, using
both the exact nunerical and the heuristic solution procedure. For the
4 and b5-grade exanples, the cost difference between heuristic and
exact solution was as snmall as 1.96% and as high as 24% The main
advantage of the heuristic is that it was between 700 and 120,000
times faster than the exact solution.
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